
HTML 5.2 1

W3C Recommendation, 14 December 2017 1

1. Introduction 1

1.1. Background 1

1.2. Audience 2

1.3. Scope 2

1.4. History 2

1.5. Design notes 4

1.5.1. Serializability of script execution 4

1.5.2. Compliance with other specifications 4

1.5.3. Extensibility 5

1.6. HTML vs XML Syntax 5

1.7. Structure of this specification 6

1.7.1. How to read this specification 7

1.7.2. Typographic conventions 7

1.8. Privacy concerns 8

1.9. A quick introduction to HTML 9

1.9.1. Writing secure applications with HTML 12

1.9.2. Common pitfalls to avoid when using the scripting APIs 14

1.9.3. How to catch mistakes when writing HTML: validators and conformance

checkers 15

1.10. Conformance requirements for authors 15

1.10.1. Presentational markup 16

1.10.2. Syntax errors 16

1.10.3. Restrictions on content models and on attribute values 20

1.11. Suggested reading 23

HTML 5.2
W3C Recommendation, 14 December 2017

1. Introduction§

1.1. Background§

This section is non-normative.

HTML is the World Wide Web’s core markup language. Originally, HTML was primarily

designed as a language for semantically describing scientific documents. Its general design,

however, has enabled it to be adapted, over the subsequent years, to describe a number of

other types of documents and even applications.

https://www.w3.org/
introduction.html#introduction
introduction.html#introduction
introduction.html#background
introduction.html#background

1.2. Audience§

This section is non-normative.

This specification is intended for authors of documents and scripts that use the features

defined in this specification, implementors of tools that operate on pages that use the

features defined in this specification, and individuals wishing to establish the correctness of

documents or implementations with respect to the requirements of this specification.

This document is probably not suited to readers who do not already have at least a passing

familiarity with Web technologies, as in places it sacrifices clarity for precision, and brevity for

completeness. More approachable tutorials and authoring guides can provide a gentler

introduction to the topic.

In particular, familiarity with the basics of DOM is necessary for a complete understanding of

some of the more technical parts of this specification. An understanding of Web IDL, HTTP,

XML, Unicode, character encodings, JavaScript, and CSS will also be helpful in places but is not

essential.

1.3. Scope§

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated

semantic-level scripting APIs for authoring accessible pages on the Web ranging from static

documents to dynamic applications.

The scope of this specification does not include providing mechanisms for media-specific

customization of presentation (although default rendering rules for Web browsers are

included at the end of this specification, and several mechanisms for hooking into CSS are

provided as part of the language).

The scope of this specification is not to describe an entire operating system. In particular,

hardware configuration software, image manipulation tools, and applications that users would

be expected to use with high-end workstations on a daily basis are out of scope. In terms of

applications, this specification is targeted specifically at applications that would be expected

to be used by users on an occasional basis, or regularly but from disparate locations, with low

CPU requirements. Examples of such applications include online purchasing systems,

searching systems, games (especially multiplayer online games), public telephone books or

address books, communications software (e-mail clients, instant messaging clients,

discussion software), document editing software, etc.

1.4. History§

This section is non-normative.

For its first five years (1990-1995), HTML went through a number of revisions and

experienced a number of extensions, primarily hosted first at CERN, and then at the IETF.

With the creation of the W3C, HTML’s development changed venue again. A first abortive

attempt at extending HTML in 1995 known as HTML 3.0 then made way to a more pragmatic

approach known as HTML 3.2, which was completed in 1997. HTML 4.01 quickly followed later

introduction.html#audience
introduction.html#audience
introduction.html#scope
introduction.html#scope
introduction.html#introduction-history
introduction.html#introduction-history

that same year.

The following year, the W3C membership decided to stop evolving HTML and instead begin

work on an XML-based equivalent, called XHTML. This effort started with a reformulation of

HTML 4.01 in XML, known as XHTML 1.0, which added no new features except the new

serialization, and which was completed in 2000. After XHTML 1.0, the W3C’s focus turned to

making it easier for other working groups to extend XHTML, under the banner of XHTML

Modularization. In parallel with this, the W3C also worked on a new language that was not

compatible with the earlier HTML and XHTML languages, calling it XHTML 2.0.

Around the time that HTML’s evolution was stopped in 1998, parts of the API for HTML

developed by browser vendors were specified and published under the name DOM Level 1 (in

1998) and DOM Level 2 Core and DOM Level 2 HTML (starting in 2000 and culminating in

2003). These efforts then petered out, with some DOM Level 3 specifications published in

2004 but the working group being closed before all the Level 3 drafts were completed.

In 2003, the publication of XForms, a technology which was positioned as the next generation

of Web forms, sparked a renewed interest in evolving HTML itself, rather than finding

replacements for it. This interest was borne from the realization that XML’s deployment as a

Web technology was limited to entirely new technologies (like RSS and later Atom), rather

than as a replacement for existing deployed technologies (like HTML).

A proof of concept to show that it was possible to extend HTML 4.01’s forms to provide many

of the features that XForms 1.0 introduced, without requiring browsers to implement

rendering engines that were incompatible with existing HTML Web pages, was the first result

of this renewed interest. At this early stage, while the draft was already publicly available, and

input was already being solicited from all sources, the specification was only under Opera

Software’s copyright.

The idea that HTML’s evolution should be reopened was tested at a W3C workshop in 2004,

where some of the principles that underlie the HTML work (described below), as well as the

aforementioned early draft proposal covering just forms-related features, were presented to

the W3C jointly by Mozilla and Opera. The proposal was rejected on the grounds that the

proposal conflicted with the previously chosen direction for the Web’s evolution; the W3C

staff and membership voted to continue developing XML-based replacements instead.

Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue

working on the effort under the umbrella of a new venue called the WHATWG. A public

mailing list was created, and the draft was moved to the WHATWG site. The copyright was

subsequently amended to be jointly owned by all three vendors, and to allow reuse of the

specification.

The WHATWG was based on several core principles, in particular that technologies need to be

backwards compatible, that specifications and implementations need to match even if this

means changing the specification rather than the implementations, and that specifications

need to be detailed enough that implementations can achieve complete interoperability

without reverse-engineering each other.

The latter requirement in particular required that the scope of the HTML specification include

what had previously been specified in three separate documents: HTML 4.01, XHTML 1.1, and

DOM Level 2 HTML. It also meant including significantly more detail than had previously been

considered the norm.

In 2006, the W3C indicated an interest to participate in the development of HTML 5.0 after

all, and in 2007 formed a working group chartered to work with the WHATWG on the

development of the HTML specification. Apple, Mozilla, and Opera allowed the W3C to publish

the specification under the W3C copyright, while keeping a version with the less restrictive

license on the WHATWG site.

For a number of years, both groups then worked together under the same editor: Ian Hickson.

In 2011, the groups came to the conclusion that they had different goals: the W3C wanted to

draw a line in the sand for features for a HTML 5.0 Recommendation, while the WHATWG

wanted to continue working on a Living Standard for HTML, continuously maintaining the

specification and adding new features. In mid 2012, a new editing team was introduced at the

W3C to take care of creating a HTML 5.0 Recommendation and prepare a Working Draft for

the next HTML version.

Since then, the W3C Web Platform WG has been cherry picking patches from the WHATWG

that resolved bugs registered on the W3C HTML specification or more accurately

represented implemented reality in user agents. At time of publication of this document,

patches from the WHATWG HTML specification have been merged until January 12, 2016.

The W3C HTML editors have also added patches that resulted from discussions and decisions

made by the W3C Web Platform WG as well a bug fixes from bugs not shared by the

WHATWG.

A separate document is published to document the differences between the HTML specified

in this document and the language described in the HTML 4.01 specification. [HTML5-DIFF]

1.5. Design notes§

This section is non-normative.

It must be admitted that many aspects of HTML appear at first glance to be nonsensical and

inconsistent.

HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been

developed over a period of several decades by a wide array of people with different priorities

who, in many cases, did not know of each other’s existence.

Features have thus arisen from many sources, and have not always been designed in

especially consistent ways. Furthermore, because of the unique characteristics of the Web,

implementation bugs have often become de-facto, and now de-jure, standards, as content is

often unintentionally written in ways that rely on them before they can be fixed.

Despite all this, efforts have been made to adhere to certain design goals. These are

described in the next few subsections.

1.5.1. Serializability of script execution§

This section is non-normative.

To avoid exposing Web authors to the complexities of multithreading, the HTML and DOM

APIs are designed such that no script can ever detect the simultaneous execution of other

scripts. Even with workers, the intent is that the behavior of implementations can be

thought of as completely serializing the execution of all scripts in all browsing contexts.

1.5.2. Compliance with other specifications§

This section is non-normative.

https://whatwg.org/specs/web-apps/current-work/#
references.html#biblio-html5-diff
introduction.html#design-notes
introduction.html#design-notes
introduction.html#serializability-of-script-execution
introduction.html#serializability-of-script-execution
https://www.w3.org/TR/workers/#worker
browsers.html#browsing-context
introduction.html#compliance-with-other-specifications
introduction.html#compliance-with-other-specifications

This specification interacts with and relies on a wide variety of other specifications. In certain

circumstances, unfortunately, conflicting needs have led to this specification violating the

requirements of these other specifications. Whenever this has occurred, the transgressions

have each been noted as a "willful violation", and the reason for the violation has been noted.

1.5.3. Extensibility§

This section is non-normative.

HTML has a wide array of extensibility mechanisms that can be used for adding semantics in a

safe manner:

Authors can use the class attribute to extend elements, effectively creating their own

elements, while using the most applicable existing "real" HTML element, so that browsers

and other tools that don’t know of the extension can still support it somewhat well. This is

the tack used by microformats, for example.

Authors can include data for inline client-side scripts or server-side site-wide scripts to

process using the data-*="" attributes. These are guaranteed to never be touched by

browsers, and allow scripts to include data on HTML elements that scripts can then look

for and process.

Authors can use the <meta name="" content=""> mechanism to include page-wide

metadata by registering extensions to the predefined set of metadata names.

Authors can use the rel="" mechanism to annotate links with specific meanings by

registering extensions to the predefined set of link types. This is also used by

microformats.

Authors can embed raw data using the <script type=""> mechanism with a custom type,

for further handling by inline or server-side scripts.

Authors can extend APIs using the JavaScript prototyping mechanism. This is widely used

by script libraries, for instance.

1.6. HTML vs XML Syntax§

This section is non-normative.

This specification defines an abstract language for describing documents and applications,

and some APIs for interacting with in-memory representations of resources that use this

language.

The in-memory representation is known as "DOM HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this

abstract language, two of which are defined in this specification.

The first such concrete syntax is the HTML syntax. This is the format suggested for most

authors. It is compatible with most legacy Web browsers. If a document is transmitted with

the text/html MIME type, then it will be processed as an HTML document by Web browsers.

This specification defines the latest version of the HTML syntax, known simply as "HTML".

The second concrete syntax is the XHTML syntax, which is an application of XML. When a

document is transmitted with an XML MIME type, such as application/xhtml+xml, then it is

introduction.html#design-notes-extensibility
introduction.html#design-notes-extensibility
dom.html#element-attrdef-global-class
dom.html#element-attrdef-global-data
document-metadata.html#elementdef-meta
document-metadata.html#elementdef-meta
document-metadata.html#elementdef-meta
document-metadata.html#register-the-names
document-metadata.html#element-attrdef-link-rel
links.html#link-types-extensions-to-the-predefined-set-of-link-type
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
introduction.html#html-vs-xhtml
introduction.html#html-vs-xhtml
iana.html#text-html
infrastructure.html#mime-type
infrastructure.html#xml-mime-type
iana.html#application-xhtmlxml

treated as an XML document by Web browsers, to be parsed by an XML processor. Authors

are reminded that the processing for XML and HTML differs; in particular, even minor syntax

errors will prevent a document labeled as XML from being rendered fully, whereas they would

be ignored in the HTML syntax. This specification defines the latest version of the XHTML

syntax, known simply as "XHTML".

The DOM, the HTML syntax, and the XHTML syntax cannot all represent the same content.

For example, namespaces cannot be represented using the HTML syntax, but they are

supported in the DOM and in the XHTML syntax. Similarly, documents that use the <noscript>

feature can be represented using the HTML syntax, but cannot be represented with the DOM

or in the XHTML syntax. Comments that contain the string "-->" can only be represented in

the DOM, not in the HTML and XHTML syntaxes.

1.7. Structure of this specification§

This section is non-normative.

This specification is divided into the following major sections:

§1 Introduction

Non-normative materials providing a context for the HTML specification.

§2 Common infrastructure

The conformance classes, algorithms, definitions, and the common underpinnings of the

rest of the specification.

§3 Semantics, structure, and APIs of HTML documents

Documents are built from elements. These elements form a tree using the DOM. This

section defines the features of this DOM, as well as introducing the features common to

all elements, and the concepts used in defining elements.

§4 The elements of HTML

Each element has a predefined meaning, which is explained in this section. Rules for

authors on how to use the element, along with user agent requirements for how to handle

each element, are also given. This includes large signature features of HTML such as

video playback and subtitles, form controls and form submission, and a 2D graphics API

known as the HTML canvas.

§5 User interaction

HTML documents can provide a number of mechanisms for users to interact with and

modify content, which are described in this section, such as how focus works, and drag-

and-drop.

§6 Loading Web pages

HTML documents do not exist in a vacuum — this section defines many of the features

that affect environments that deal with multiple pages, such as Web browsers and offline

caching of Web applications.

§7 Web application APIs

This section introduces basic features for scripting of applications in HTML.

§8 The HTML syntax
§9 The XML syntax

All of these features would be for naught if they couldn’t be represented in a serialized

form and sent to other people, and so these sections define the syntaxes of HTML and

XHTML, along with rules for how to parse content using those syntaxes.

infrastructure.html#xml-mime-type
iana.html#application-xhtmlxml
semantics-scripting.html#elementdef-noscript
semantics-scripting.html#elementdef-noscript
semantics-scripting.html#elementdef-noscript
introduction.html#structure-of-this-specification
introduction.html#structure-of-this-specification
introduction.html#introduction
infrastructure.html#infrastructure
dom.html#dom
semantics.html#semantics
editing.html#editing
browsers.html#browsers
webappapis.html#webappapis
syntax.html#syntax
xhtml.html#xhtml

This section defines the default rendering rules for Web browsers.

There are also some appendices, listing §11 Obsolete features and §12 IANA considerations,

and several indices.

1.7.1. How to read this specification§

This specification should be read like all other specifications. First, it should be read cover-to-

cover, multiple times. Then, it should be read backwards at least once. Then it should be read

by picking random sections from the contents list and following all the cross-references.

As described in the conformance requirements section below, this specification describes

conformance criteria for a variety of conformance classes. In particular, there are

conformance requirements that apply to producers, for example authors and the documents

they create, and there are conformance requirements that apply to consumers, for example

Web browsers. They can be distinguished by what they are requiring: a requirement on a

producer states what is allowed, while a requirement on a consumer states how software is to

act.

'EXAMPLE ' COUNTER(EXAMPLE) For example, "the foo attribute’s value must be a valid

integer" is a requirement on producers, as it lays out the allowed values; in contrast, the

requirement "the foo attribute’s value must be parsed using the rules for parsing integers

" is a requirement on consumers, as it describes how to process the content.

¶

Requirements on producers have no bearing whatsoever on consumers.

'EXAMPLE ' COUNTER(EXAMPLE) Continuing the above example, a requirement stating

that a particular attribute’s value is constrained to being a valid integer emphatically does

not imply anything about the requirements on consumers. It might be that the consumers

are in fact required to treat the attribute as an opaque string, completely unaffected by

whether the value conforms to the requirements or not. It might be (as in the previous

example) that the consumers are required to parse the value using specific rules that

define how invalid (non-numeric in this case) values are to be processed.

¶

1.7.2. Typographic conventions§

This is a definition, requirement, or explanation.

This is a note.

'EXAMPLE ' COUNTER(EXAMPLE)This is an example.

¶

This is an open issue.

This is a warning.

rendering.html#rendering
obsolete.html#obsolete
iana.html#iana
introduction.html#how-to-read-this-specification
introduction.html#how-to-read-this-specification
infrastructure.html#valid-integer
infrastructure.html#valid-integer
infrastructure.html#parse-token-as-an-integer
introduction.html#example-7e5c439b
introduction.html#example-7e5c439b
infrastructure.html#valid-integer
introduction.html#example-287546e8
introduction.html#example-287546e8
introduction.html#typographic-conventions
introduction.html#typographic-conventions
introduction.html#example-263fb1aa
introduction.html#example-263fb1aa

interface Example {

 // this is an IDL definition

};

variable = object . method([optionalArgument])

This is a note to authors describing the usage of an interface.

‘/* this is a CSS fragment */’

The defining instance of a term is marked up like this. Uses of that term are marked up like

this or like this.

The defining instance of an element, attribute, or API is marked up like this. References to

that element, attribute, or API are marked up like <this>.

Other code fragments are marked up like this.

Byte sequences with bytes in the range 0x00 to 0x7F, inclusive, are marked up like this.

Variables are marked up like this.

In an algorithm, steps in synchronous sections are marked with .

In some cases, requirements are given in the form of lists with conditions and corresponding

requirements. In such cases, the requirements that apply to a condition are always the first set

of requirements that follow the condition, even in the case of there being multiple sets of

conditions for those requirements. Such cases are presented as follows:

?This is a condition
?This is another condition

This is the requirement that applies to the conditions above.

?This is a third condition

This is the requirement that applies to the third condition.

1.8. Privacy concerns§

This section is non-normative.

Some features of HTML trade user convenience for a measure of user privacy.

In general, due to the Internet’s architecture, a user can be distinguished from another by the

user’s IP address. IP addresses do not perfectly match to a user; as a user moves from device

to device, or from network to network, their IP address will change; similarly, NAT routing,

proxy servers, and shared computers enable packets that appear to all come from a single IP

address to actually map to multiple users. Technologies such as onion routing can be used to

further anonymize requests so that requests from a single user at one node on the Internet

appear to come from many disparate parts of the network.

However, the IP address used for a user’s requests is not the only mechanism by which a

user’s requests could be related to each other. Cookies, for example, are designed specifically

to enable this, and are the basis of most of the Web’s session features that enable you to log

into a site with which you have an account.

There are other mechanisms that are more subtle. Certain characteristics of a user’s system

introduction.html#this
introduction.html#this
introduction.html#elementdef-this
introduction.html#elementdef-this
introduction.html#elementdef-this
webappapis.html#synchronous-section
introduction.html#fingerprint
introduction.html#fingerprint

can be used to distinguish groups of users from each other; by collecting enough such

information, an individual user’s browser’s "digital fingerprint" can be computed, which can be

as good, if not better, as an IP address in ascertaining which requests are from the same user.

Grouping requests in this manner, especially across multiple sites, can be used for both benign

(and even arguably positive) purposes, as well as for malevolent purposes. An example of a

reasonably benign purpose would be determining whether a particular person seems to prefer

sites with dog illustrations as opposed to sites with cat illustrations (based on how often they

visit the sites in question) and then automatically using the preferred illustrations on

subsequent visits to participating sites. Malevolent purposes, however, could include

governments combining information such as the person’s home address (determined from

the addresses they use when getting driving directions on one site) with their apparent

political affiliations (determined by examining the forum sites that they participate in) to

determine whether the person should be prevented from voting in an election.

Since the malevolent purposes can be remarkably evil, user agent implementors are

encouraged to consider how to provide their users with tools to minimize leaking information

that could be used to fingerprint a user.

Unfortunately, as the first paragraph in this section implies, sometimes there is great benefit

to be derived from exposing the very information that can also be used for fingerprinting

purposes, so it’s not as easy as simply blocking all possible leaks. For instance, the ability to

log into a site to post under a specific identity requires that the user’s requests be identifiable

as all being from the same user. More subtly, though, information such as how wide text is,

which is necessary for many effects that involve drawing text onto a canvas (e.g., any effect

that involves drawing a border around the text) also leaks information that can be used to

group a user’s requests. (In this case, by potentially exposing, via a brute force search, which

fonts a user has installed, information which can vary considerably from user to user.)

Features in this specification which can be used to fingerprint the user are marked as this

paragraph is.

Other features in the platform can be used for the same purpose, though, including, though

not limited to:

The exact list of which features a user agents supports.

The maximum allowed stack depth for recursion in script.

Features that describe the user’s environment, like Media Queries and the Screen

object. [MEDIAQ] [CSSOM-VIEW]

The user’s time zone.

1.9. A quick introduction to HTML§

This section is non-normative.

A basic HTML document looks like this:

introduction.html#fingerprinting-vector
https://www.w3.org/TR/cssom-view/#screen
references.html#biblio-mediaq
references.html#biblio-cssom-view
introduction.html#a-quick-introduction-to-html
introduction.html#a-quick-introduction-to-html

<!DOCTYPE html>

<html>

<head>

<title>Sample page</title>

</head>

<body>

<h1>Sample page</h1>

<p>This is a simple sample.</p>

<!-- this is a comment -->

</body>

</html>

HTML documents consist of a tree of elements and text. Each element is denoted in the

source by a start tag, such as "<body>", and an end tag, such as "</body>". (Certain start tags

and end tags can in certain cases be omitted and are implied by other tags.)

Tags have to be nested such that elements are all completely within each other, without

overlapping:

<p>This is very wrong!</p>

<p>This is correct.</p>

This specification defines a set of elements that can be used in HTML, along with rules about

the ways in which the elements can be nested.

Elements can have attributes, which control how the elements work. In the example below,

there is a hyperlink, formed using the <a> element and its href attribute:

simple

Attributes are placed inside the start tag, and consist of a name and a value, separated by an "

=" character. The attribute value can remain unquoted if it doesn’t contain space characters

or any of " ' ` = < or >. Otherwise, it has to be quoted using either single or double quotes. The

value, along with the "=" character, can be omitted altogether if the value is the empty string.

<!-- empty attributes -->

<input name=address disabled>

<input name=address disabled="">

<!-- attributes with a value -->

<input name=address maxlength=200>

<input name=address maxlength='200'>

<input name=address maxlength="200">

HTML user agents (e.g., Web browsers) then parse this markup, turning it into a DOM

(Document Object Model) tree. A DOM tree is an in-memory representation of a document.

DOM trees contain several kinds of nodes, in particular a DocumentType node, Element

nodes, Text nodes, Comment nodes, and in some cases ProcessingInstruction

nodes.

The markup snippet at the top of this section would be turned into the following DOM tree:

syntax.html#syntax-start-tags
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
syntax.html#syntax-end-tags
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
syntax.html#optional-start-and-end-tags
links.html#hyperlink
textlevel-semantics.html#elementdef-a
textlevel-semantics.html#elementdef-a
textlevel-semantics.html#elementdef-a
links.html#element-attrdef-a-href
syntax.html#attributes
syntax.html#attribute-names
syntax.html#attribute-values
syntax.html#unquoted
infrastructure.html#space-characters
infrastructure.html#reparsed
https://www.w3.org/TR/dom41/#documenttype
https://www.w3.org/TR/dom/#interface-element
https://www.w3.org/TR/dom41/#text
https://www.w3.org/TR/dom41/#comment
https://www.w3.org/TR/dom41/#processinginstruction
introduction.html#intro-early-example

DOCTYPE: html

<html>

<head>

#text:

<title>

#text: Sample page

#text:

#text:

<body>

#text:

<h1>

#text: Sample page

#text:

<p>

#text: This is a

<a> href="demo.html"

#text: simple

#text: sample.

#text:

#comment: this is a comment

#text:

The document element of this tree is the <html> element, which is the element always found

in that position in HTML documents. It contains two elements, <head> and <body>, as well as a

Text node between them.

There are many more Text nodes in the DOM tree than one would initially expect, because

the source contains a number of spaces (represented here by "") and line breaks ("") that all

end up as Text nodes in the DOM. However, for historical reasons not all of the spaces and

line breaks in the original markup appear in the DOM. In particular, all the white space before <

head> start tag ends up being dropped silently, and all the white space after the <body> end tag

ends up placed at the end of the <body>.

The <head> element contains a <title> element, which itself contains a Text node with the

text "Sample page". Similarly, the <body> element contains an <h1> element, a <p> element, and

a comment.

This DOM tree can be manipulated from scripts in the page. Scripts (typically in JavaScript) are

small programs that can be embedded using the <script> element or using event handler

content attributes. For example, here is a form with a script that sets the value of the form’s <

output> element to say "Hello World"

semantics.html#elementdef-html
semantics.html#elementdef-html
semantics.html#elementdef-html
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
document-metadata.html#elementdef-title
document-metadata.html#elementdef-title
document-metadata.html#elementdef-title
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-h1
sections.html#elementdef-h1
sections.html#elementdef-h1
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
textlevel-semantics.html#elementdef-a
textlevel-semantics.html#elementdef-a
textlevel-semantics.html#elementdef-a
links.html#element-attrdef-a-href
browsers.html#dom-window-document
semantics.html#elementdef-html
semantics.html#elementdef-html
semantics.html#elementdef-html
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
https://www.w3.org/TR/dom41/#text
https://www.w3.org/TR/dom41/#text
https://www.w3.org/TR/dom41/#text
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
document-metadata.html#elementdef-head
document-metadata.html#elementdef-title
document-metadata.html#elementdef-title
document-metadata.html#elementdef-title
https://www.w3.org/TR/dom41/#text
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-body
sections.html#elementdef-h1
sections.html#elementdef-h1
sections.html#elementdef-h1
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
webappapis.html#event-handler-content-event-handler-content-attribute
webappapis.html#event-handler-content-event-handler-content-attribute
sec-forms.html#elementdef-output
sec-forms.html#elementdef-output
sec-forms.html#elementdef-output

<form name="main">

 Result: <output name="result"></output>

<script>

 document.forms.main.elements.result.value = 'Hello World';

</script>

</form>

Each element in the DOM tree is represented by an object, and these objects have APIs so

that they can be manipulated. For instance, a link (e.g., the <a> element in the tree above) can

have its "href" attribute changed in several ways:

var a = document.links[0]; // obtain the first link in the document

a.href = 'sample.html'; // change the destination URL of the link

a.protocol = 'https'; // change just the scheme part of the URL

a.setAttribute('href', 'http://example.com/');

// change the content attribute directly

Since DOM trees are used as the way to represent HTML documents when they are

processed and presented by implementations (especially interactive implementations like

Web browsers), this specification is mostly phrased in terms of DOM trees, instead of the

markup described above.

HTML documents represent a media-independent description of interactive content. HTML

documents might be rendered to a screen, or through a speech synthesizer, or on a braille

display. To influence exactly how such rendering takes place, authors can use a styling

language such as CSS.

In the following example, the page has been made yellow-on-blue using CSS.

<!DOCTYPE html>

<html>

<head>

<title>Sample styled page</title>

<style>

body { background: navy; color: yellow; }

</style>

</head>

<body>

<h1>Sample styled page</h1>

<p>This page is just a demo.</p>

</body>

</html>

For more details on how to use HTML, authors are encouraged to consult tutorials and guides.

Some of the examples included in this specification might also be of use, but the novice

author is cautioned that this specification, by necessity, defines the language with a level of

detail that might be difficult to understand at first.

1.9.1. Writing secure applications with HTML§

This section is non-normative.

When HTML is used to create interactive sites, care needs to be taken to avoid introducing

textlevel-semantics.html#elementdef-a
textlevel-semantics.html#elementdef-a
textlevel-semantics.html#elementdef-a
links.html#element-attrdef-a-href
introduction.html#writing-secure-applications-with-html
introduction.html#writing-secure-applications-with-html

vulnerabilities through which attackers can compromise the integrity of the site itself or of the

site’s users.

A comprehensive study of this matter is beyond the scope of this document, and authors are

strongly encouraged to study the matter in more detail. However, this section attempts to

provide a quick introduction to some common pitfalls in HTML application development.

The security model of the Web is based on the concept of "origins", and correspondingly

many of the potential attacks on the Web involve cross-origin actions. [ORIGIN]

Not validating user input
Cross-site scripting (XSS)
SQL injection

When accepting untrusted input, e.g., user-generated content such as text comments,

values in URL parameters, messages from third-party sites, etc, it is imperative that the

data be validated before use, and properly escaped when displayed. Failing to do this can

allow a hostile user to perform a variety of attacks, ranging from the potentially benign,

such as providing bogus user information like a negative age, to the serious, such as

running scripts every time a user looks at a page that includes the information, potentially

propagating the attack in the process, to the catastrophic, such as deleting all data in the

server.

When writing filters to validate user input, it is imperative that filters always be safelist-

based, allowing known-safe constructs and disallowing all other input. Blocklist-based

filters that disallow known-bad inputs and allow everything else are not secure, as not

everything that is bad is yet known (for example, because it might be invented in the

future).

'EXAMPLE ' COUNTER(EXAMPLE) For example, suppose a page looked at its URL’s

query string to determine what to display, and the site then redirected the user to

that page to display a message, as in:

Say Hello

Say Welcome

Say Kittens

If the message was just displayed to the user without escaping, a hostile attacker

could then craft a URL that contained a script element:

http://example.com/message.cgi?say=%3Cscript%3Ealert%28%27Oh%20no%21%27%29%3C/script%3E

If the attacker then convinced a victim user to visit this page, a script of the attacker’s

choosing would run on the page. Such a script could do any number of hostile actions,

limited only by what the site offers: if the site is an e-commerce shop, for instance,

such a script could cause the user to unknowingly make arbitrarily many unwanted

purchases.

This is called a cross-site scripting attack.

¶

There are many constructs that can be used to try to trick a site into executing code. Here

are some that authors are encouraged to consider when writing safelist filters:

When allowing harmless-seeming elements like , it is important to safelist any

references.html#biblio-origin
introduction.html#example-fd8071c5
introduction.html#example-fd8071c5
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img

provided attributes as well. If one allowed all attributes then an attacker could, for

instance, use the onload attribute to run arbitrary script.

When allowing URLs to be provided (e.g., for links), the scheme of each URL also needs to

be explicitly safelisted, as there are many schemes that can be abused. The most

prominent example is "javascript:", but user agents can implement (and indeed, have

historically implemented) others.

Allowing a <base> element to be inserted means any <script> elements in the page with

relative links can be hijacked, and similarly that any form submissions can get redirected

to a hostile site.

Cross-site request forgery (CSRF)

If a site allows a user to make form submissions with user-specific side-effects, for

example posting messages on a forum under the user’s name, making purchases, or

applying for a passport, it is important to verify that the request was made by the user

intentionally, rather than by another site tricking the user into making the request

unknowingly.

This problem exists because HTML forms can be submitted to other origins.

Sites can prevent such attacks by populating forms with user-specific hidden tokens, or

by checking Origin headers on all requests.

Clickjacking

A page that provides users with an interface to perform actions that the user might not

wish to perform needs to be designed so as to avoid the possibility that users can be

tricked into activating the interface.

One way that a user could be so tricked is if a hostile site places the victim site in a small <

iframe> and then convinces the user to click, for instance by having the user play a

reaction game. Once the user is playing the game, the hostile site can quickly position the

<iframe> under the mouse cursor just as the user is about to click, thus tricking the user

into clicking the victim site’s interface.

To avoid this, sites that do not expect to be used in frames are encouraged to only enable

their interface if they detect that they are not in a frame (e.g., by comparing the window

object to the value of the top attribute).

1.9.2. Common pitfalls to avoid when using the scripting APIs§

This section is non-normative.

Scripts in HTML have "run-to-completion" semantics, meaning that the browser will generally

run the script uninterrupted before doing anything else, such as firing further events or

continuing to parse the document.

On the other hand, parsing of HTML files happens incrementally, meaning that the parser can

pause at any point to let scripts run. This is generally a good thing, but it does mean that

authors need to be careful to avoid hooking event handlers after the events could have

possibly fired.

There are two techniques for doing this reliably: use event handler content attributes, or

create the element and add the event handlers in the same script. The latter is safe because,

as mentioned earlier, scripts are run to completion before further events can fire.

semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
webappapis.html#dom-globaleventhandlers-onload
document-metadata.html#elementdef-base
document-metadata.html#elementdef-base
document-metadata.html#elementdef-base
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-embedded-content.html#elementdef-iframe
semantics-embedded-content.html#elementdef-iframe
semantics-embedded-content.html#elementdef-iframe
semantics-embedded-content.html#elementdef-iframe
semantics-embedded-content.html#elementdef-iframe
semantics-embedded-content.html#elementdef-iframe
browsers.html#dom-window-window
browsers.html#dom-window-top
introduction.html#common-pitfalls-to-avoid-when-using-the-scripting-apis
introduction.html#common-pitfalls-to-avoid-when-using-the-scripting-apis
webappapis.html#event-handler-content-event-handler-content-attribute

'EXAMPLE ' COUNTER(EXAMPLE) One way this could manifest itself is with

elements and the load event. The event could fire as soon as the element has been

parsed, especially if the image has already been cached (which is common).

Here, the author uses the onload handler on an element to catch the load event:

If the element is being added by script, then so long as the event handlers are added in

the same script, the event will still not be missed:

<script>

var img = new Image();

img.src = 'games.png';

img.alt = 'Games';

img.onload = gamesLogoHasLoaded;

// img.addEventListener('load', gamesLogoHasLoaded, false); // would work also

</script>

However, if the author first created the element and then in a separate script added

the event listeners, there’s a chance that the load event would be fired in between,

leading it to be missed:

<!-- Do not use this style, it has a race condition! -->

<!-- the 'load' event might fire here while the parser is taking a

break, in which case you will not see it! -->

<script>

var img = document.getElementById('games');

img.onload = gamesLogoHasLoaded; // might never fire!

</script>

¶

1.9.3. How to catch mistakes when writing HTML: validators and conformance checkers§

This section is non-normative.

Authors are encouraged to make use of conformance checkers (also known as validators) to

catch common mistakes. The W3C provides a number of online validation services, including

the Nu Markup Validation Service.

1.10. Conformance requirements for authors§

This section is non-normative.

Unlike previous versions of the HTML specification, this specification defines in some detail

the required processing for invalid documents as well as valid documents.

However, even though the processing of invalid content is in most cases well-defined,

conformance requirements for documents are still important: in practice, interoperability (the

situation in which all implementations process particular content in a reliable and identical or

semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
fullindex.html#eventdef-global-load
webappapis.html#dom-globaleventhandlers-onload
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
fullindex.html#eventdef-global-load
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
semantics-embedded-content.html#elementdef-img
introduction.html#example-bf9c0d0d
introduction.html#example-bf9c0d0d
introduction.html#how-to-catch-mistakes-when-writing-html-validators-and-conformance-checkers
introduction.html#how-to-catch-mistakes-when-writing-html-validators-and-conformance-checkers
https://validator.w3.org/nu/#
introduction.html#conformance-requirements-for-authors
introduction.html#conformance-requirements-for-authors

equivalent way) is not the only goal of document conformance requirements. This section

details some of the more common reasons for still distinguishing between a conforming

document and one with errors.

1.10.1. Presentational markup§

This section is non-normative.

The majority of presentational features from previous versions of HTML are no longer

allowed. Presentational markup in general has been found to have a number of problems:

The use of presentational elements leads to poorer accessibility

While it is possible to use presentational markup in a way that provides users of assistive

technologies (ATs) with an acceptable experience (e.g., using ARIA), doing so is

significantly more difficult than doing so when using semantically-appropriate markup.

Furthermore, even using such techniques doesn’t help make pages accessible for non-

AT, non-graphical users, such as users of text-mode browsers.

Using media-independent markup, on the other hand, provides an easy way for

documents to be authored in such a way that they are "accessible" for more users (e.g.,

users of text browsers).

Higher cost of maintenance

It is significantly easier to maintain a site written in such a way that the markup is style-

independent. For example, changing the color of a site that uses

throughout requires changes across the entire site, whereas a similar change to a site

based on CSS can be done by changing a single file.

Larger document sizes

Presentational markup tends to be much more redundant, and thus results in larger

document sizes.

For those reasons, presentational markup has been removed from HTML in this version. This

change should not come as a surprise; HTML 4.0 deprecated presentational markup many

years ago and provided a mode (HTML Transitional) to help authors move away from

presentational markup; later, XHTML 1.1 went further and obsoleted those features

altogether.

The only remaining presentational markup features in HTML are the style attribute and the <

style> element. Use of the style attribute is somewhat discouraged in production

environments, but it can be useful for rapid prototyping (where its rules can be directly moved

into a separate style sheet later) and for providing specific styles in unusual cases where a

separate style sheet would be inconvenient. Similarly, the <style> element can be useful in

syndication or for page-specific styles, but in general an external style sheet is likely to be

more convenient when the styles apply to multiple pages.

It is also worth noting that some elements that were previously presentational have been

redefined in this specification to be media-independent: , <i>, <hr>, <s>, <small>, and <u>.

1.10.2. Syntax errors§

This section is non-normative.

The syntax of HTML is constrained to avoid a wide variety of problems.

infrastructure.html#conforming-document
infrastructure.html#conforming-document
introduction.html#presentational-markup
introduction.html#presentational-markup
dom.html#element-attrdef-global-style
document-metadata.html#elementdef-style
document-metadata.html#elementdef-style
document-metadata.html#elementdef-style
dom.html#element-attrdef-global-style
document-metadata.html#elementdef-style
document-metadata.html#elementdef-style
document-metadata.html#elementdef-style
textlevel-semantics.html#elementdef-b
textlevel-semantics.html#elementdef-b
textlevel-semantics.html#elementdef-b
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
grouping-content.html#elementdef-hr
grouping-content.html#elementdef-hr
grouping-content.html#elementdef-hr
textlevel-semantics.html#elementdef-s
textlevel-semantics.html#elementdef-s
textlevel-semantics.html#elementdef-s
textlevel-semantics.html#elementdef-small
textlevel-semantics.html#elementdef-small
textlevel-semantics.html#elementdef-small
textlevel-semantics.html#elementdef-u
textlevel-semantics.html#elementdef-u
textlevel-semantics.html#elementdef-u
introduction.html#syntax-errors
introduction.html#syntax-errors

Certain invalid syntax constructs, when parsed, result in DOM trees that are highly

unintuitive.

'EXAMPLE ' COUNTER(EXAMPLE) For example, the following markup fragment

results in a DOM with an <hr> element that is an earlier sibling of the corresponding <

table> element:

<table><hr>...

¶

Errors with optional error recovery

To allow user agents to be used in controlled environments without having to implement

the more bizarre and convoluted error handling rules, user agents are permitted to fail

whenever encountering a parse error.

Errors where the error-handling behavior is not compatible with streaming user agents

Some error-handling behavior, such as the behavior for the <table><hr>... example

mentioned above, are incompatible with streaming user agents (user agents that process

HTML files in one pass, without storing state). To avoid interoperability problems with

such user agents, any syntax resulting in such behavior is considered invalid.

Errors that can result in infoset coercion

When a user agent based on XML is connected to an HTML parser, it is possible that

certain invariants that XML enforces, such as element or attribute names never contain

multiple colons, will be violated by an HTML file. Handling this can require that the parser

coerce the HTML DOM into an XML-compatible infoset. Most syntax constructs that

require such handling are considered invalid. (Comments containing two consecutive

hyphens, or ending with a hyphen, are exceptions that are allowed in the HTML syntax.)

Errors that result in disproportionately poor performance

Certain syntax constructs can result in disproportionately poor performance. To

discourage the use of such constructs, they are typically made non-conforming.

grouping-content.html#elementdef-hr
grouping-content.html#elementdef-hr
grouping-content.html#elementdef-hr
tabular-data.html#elementdef-table
tabular-data.html#elementdef-table
tabular-data.html#elementdef-table
introduction.html#example-0dccb7e3
introduction.html#example-0dccb7e3
syntax.html#parse-errors
tabular-data.html#elementdef-table
tabular-data.html#elementdef-table
tabular-data.html#elementdef-table
grouping-content.html#elementdef-hr
grouping-content.html#elementdef-hr
grouping-content.html#elementdef-hr

'EXAMPLE ' COUNTER(EXAMPLE) For example, the following markup results in poor

performance, since all the unclosed <i> elements have to be reconstructed in each

paragraph, resulting in progressively more elements in each paragraph:

<p><i>He dreamt.

<p><i>He dreamt that he ate breakfast.

<p><i>Then lunch.

<p><i>And finally dinner.

The resulting DOM for this fragment would be:

<p>

<i>

#text: He dreamt.

<p>

<i>

<i>

#text: He dreamt that he ate breakfast.

<p>

<i>

<i>

<i>

#text: Then lunch.

<p>

<i>

<i>

<i>

<i>

#text: And finally dinner.

¶

Errors involving fragile syntax constructs

There are syntax constructs that, for historical reasons, are relatively fragile. To help

reduce the number of users who accidentally run into such problems, they are made non-

conforming.

textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
textlevel-semantics.html#elementdef-i
introduction.html#example-ccb699bd
introduction.html#example-ccb699bd

'EXAMPLE ' COUNTER(EXAMPLE) For example, the parsing of certain named

character references in attributes happens even with the closing semicolon being

omitted. It is safe to include an ampersand followed by letters that do not form a

named character reference, but if the letters are changed to a string that does form a

named character reference, they will be interpreted as that character instead.

In this fragment, the attribute’s value is "?bill&ted":

Bill and Ted

In the following fragment, however, the attribute’s value is actually "?art©", not the

intended "?art©", because even without the final semicolon, "©" is handled

the same as "©" and thus gets interpreted as "©":

Art and Copy

To avoid this problem, all named character references are required to end with a

semicolon, and uses of named character references without a semicolon are flagged

as errors.

Thus, the correct way to express the above cases is as follows:

Bill and Ted

<!-- &ted is ok, since it’s not a named character reference -->

Art and Copy <!-- the & has to be escaped, since © is a named character reference -->

¶

Errors involving known interoperability problems in legacy user agents

Certain syntax constructs are known to cause especially subtle or serious problems in

legacy user agents, and are therefore marked as non-conforming to help authors avoid

them.

'EXAMPLE ' COUNTER(EXAMPLE) For example, this is why the U+0060 GRAVE

ACCENT character (`) is not allowed in unquoted attributes. In certain legacy user

agents, it is sometimes treated as a quote character.

¶

'EXAMPLE ' COUNTER(EXAMPLE) Another example of this is the DOCTYPE, which is

required to trigger no-quirks mode, because the behavior of legacy user agents in

quirks mode is often largely undocumented.

¶

Errors that risk exposing authors to security attacks

Certain restrictions exist purely to avoid known security problems.

'EXAMPLE ' COUNTER(EXAMPLE) For example, the restriction on using UTF-7 exists

purely to avoid authors falling prey to a known cross-site-scripting attack using

UTF-7. [RFC2152]

¶

introduction.html#example-4c330288
introduction.html#example-4c330288
introduction.html#example-75966b06
introduction.html#example-75966b06
infrastructure.html#no-quirks-mode
infrastructure.html#quirks-mode
introduction.html#example-767451ed
introduction.html#example-767451ed
references.html#biblio-rfc2152
introduction.html#example-7147ccfb
introduction.html#example-7147ccfb

Markup where the author’s intent is very unclear is often made non-conforming.

Correcting these errors early makes later maintenance easier.

'EXAMPLE ' COUNTER(EXAMPLE) For example, it is unclear whether the author

intended the following to be an <h1> heading or an <h2> heading:

¶

<h2>Contact details</h1>

Cases that are likely to be typos

When a user makes a simple typo, it is helpful if the error can be caught early, as this can

save the author a lot of debugging time. This specification therefore usually considers it

an error to use element names, attribute names, and so forth, that do not match the

names defined in this specification.

'EXAMPLE ' COUNTER(EXAMPLE) For example, if the author typed <capton> instead

of <caption>, this would be flagged as an error and the author could correct the typo

immediately.

¶

Errors that could interfere with new syntax in the future

In order to allow the language syntax to be extended in the future, certain otherwise

harmless features are disallowed.

'EXAMPLE ' COUNTER(EXAMPLE) For example, attributes in end tags are ignored

currently, but they are invalid, in case a future change to the language makes use of

that syntax feature without conflicting with already-deployed (and valid!) content.

¶

Some authors find it helpful to be in the practice of always quoting all attributes and always

including all optional tags, preferring the consistency derived from such custom over the

minor benefits of terseness afforded by making use of the flexibility of the HTML syntax. To

aid such authors, conformance checkers can provide modes of operation wherein such

conventions are enforced.

1.10.3. Restrictions on content models and on attribute values§

This section is non-normative.

Beyond the syntax of the language, this specification also places restrictions on how elements

and attributes can be specified. These restrictions are present for similar reasons:

Errors involving content with dubious semantics

To avoid misuse of elements with defined meanings, content models are defined that

restrict how elements can be nested when such nestings would be of dubious value.

'EXAMPLE ' COUNTER(EXAMPLE)

For example, this specification disallows nesting a <section> element inside a <kbd>

element, since it is highly unlikely for an author to indicate that an entire section

should be keyed in.

¶

Errors that involve a conflict in expressed semantics

Similarly, to draw the author’s attention to mistakes in the use of elements, clear

contradictions in the semantics expressed are also considered conformance errors.

sections.html#elementdef-h1
sections.html#elementdef-h1
sections.html#elementdef-h1
sections.html#elementdef-h2
sections.html#elementdef-h2
sections.html#elementdef-h2
introduction.html#example-f40bc4c0
introduction.html#example-f40bc4c0
tabular-data.html#elementdef-caption
tabular-data.html#elementdef-caption
tabular-data.html#elementdef-caption
introduction.html#example-27faa4e7
introduction.html#example-27faa4e7
introduction.html#example-f2674326
introduction.html#example-f2674326
introduction.html#restrictions-on-content-models-and-on-attribute-values
introduction.html#restrictions-on-content-models-and-on-attribute-values
sections.html#elementdef-section
sections.html#elementdef-section
sections.html#elementdef-section
textlevel-semantics.html#elementdef-kbd
textlevel-semantics.html#elementdef-kbd
textlevel-semantics.html#elementdef-kbd
introduction.html#example-d984ebcc
introduction.html#example-d984ebcc

'EXAMPLE ' COUNTER(EXAMPLE) In the fragments below, for example, the

semantics are nonsensical: a separator cannot simultaneously be a cell, nor can a

radio button be a progress bar.

<hr role="cell">

<input type=radio role=progressbar>

¶

'EXAMPLE ' COUNTER(EXAMPLE) Another example is the restrictions on the

content models of the element, which only allows element children. Lists by

definition consist just of zero or more list items, so if a element contains

something other than an element, it’s not clear what was meant.

¶

Cases where the default styles are likely to lead to confusion

Certain elements have default styles or behaviors that make certain combinations likely

to lead to confusion. Where these have equivalent alternatives without this problem, the

confusing combinations are disallowed.

'EXAMPLE ' COUNTER(EXAMPLE) For example, <div> elements are rendered as

block boxes, and elements as inline boxes. Putting a block box in an inline box

is unnecessarily confusing; since either nesting just <div> elements, or nesting just <

span> elements, or nesting elements inside <div> elements all serve the same

purpose as nesting a <div> element in a element, but only the latter involves a

block box in an inline box, the latter combination is disallowed.

¶

'EXAMPLE ' COUNTER(EXAMPLE) Another example would be the way interactive

content cannot be nested. For example, a <button> element cannot contain a <

textarea> element. This is because the default behavior of such nesting interactive

elements would be highly confusing to users. Instead of nesting these elements, they

can be placed side by side.

¶

Errors that indicate a likely misunderstanding of the specification

Sometimes, something is disallowed because allowing it would likely cause author

confusion.

'EXAMPLE ' COUNTER(EXAMPLE) For example, setting the disabled attribute to the

value "false" is disallowed, because despite the appearance of meaning that the

element is enabled, it in fact means that the element is disabled (what matters for

implementations is the presence of the attribute, not its value).

¶

Errors involving limits that have been imposed merely to simplify the language

Some conformance errors simplify the language that authors need to learn.

introduction.html#example-2e4388b0
introduction.html#example-2e4388b0
grouping-content.html#elementdef-ul
grouping-content.html#elementdef-ul
grouping-content.html#elementdef-ul
grouping-content.html#elementdef-li
grouping-content.html#elementdef-li
grouping-content.html#elementdef-li
grouping-content.html#elementdef-ul
grouping-content.html#elementdef-ul
grouping-content.html#elementdef-ul
grouping-content.html#elementdef-li
grouping-content.html#elementdef-li
grouping-content.html#elementdef-li
introduction.html#example-2eeb2419
introduction.html#example-2eeb2419
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
https://www.w3.org/TR/CSS22/visuren.html#x9
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
https://www.w3.org/TR/CSS22/visuren.html#inline-box
https://www.w3.org/TR/CSS22/visuren.html#x9
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
grouping-content.html#elementdef-div
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
textlevel-semantics.html#elementdef-span
https://www.w3.org/TR/CSS22/visuren.html#x9
https://www.w3.org/TR/CSS22/visuren.html#inline-box
introduction.html#example-2b9f1b66
introduction.html#example-2b9f1b66
dom.html#interactive-content-2
dom.html#interactive-content-2
sec-forms.html#elementdef-button
sec-forms.html#elementdef-button
sec-forms.html#elementdef-button
sec-forms.html#elementdef-textarea
sec-forms.html#elementdef-textarea
sec-forms.html#elementdef-textarea
introduction.html#example-940601d1
introduction.html#example-940601d1
sec-forms.html#element-attrdef-disabledformelements-disabled
introduction.html#example-a37f5e13
introduction.html#example-a37f5e13

'EXAMPLE ' COUNTER(EXAMPLE) For example, the <area> element’s shape

attribute, despite accepting both "circ" and "circle" values in practice as synonyms,

disallows the use of the "circ" value, so as to simplify tutorials and other learning

aids. There would be no benefit to allowing both, but it would cause extra confusion

when teaching the language.

¶

Errors that involve peculiarities of the parser

Certain elements are parsed in somewhat eccentric ways (typically for historical reasons),

and their content model restrictions are intended to avoid exposing the author to these

issues.

'EXAMPLE ' COUNTER(EXAMPLE) For example, a <form>

element isn’t allowed inside phrasing content, because when parsed as HTML, a <

form> element’s start tag will imply a <p> element’s end tag. Thus, the following

markup results in two paragraphs, not one:

<p>Welcome. <form><label>Name:</label> <input></form>

It is parsed exactly like the following:

<p>Welcome. </p><form><label>Name:</label> <input></form>

¶

Errors that would likely result in scripts failing in hard-to-debug ways

Some errors are intended to help prevent script problems that would be hard to debug.

'EXAMPLE ' COUNTER(EXAMPLE) This is why, for instance, it is non-conforming to

have two id attributes with the same value. Duplicate IDs lead to the wrong element

being selected, with sometimes disastrous effects whose cause is hard to determine.

¶

Errors that waste authoring time

Some constructs are disallowed because historically they have been the cause of a lot of

wasted authoring time, and by encouraging authors to avoid making them, authors can

save time in future efforts.

'EXAMPLE ' COUNTER(EXAMPLE) For example, a <script> element’s src attribute

causes the element’s contents to be ignored. However, this isn’t obvious, especially if

the element’s contents appear to be executable script — which can lead to authors

spending a lot of time trying to debug the inline script without realizing that it is not

executing. To reduce this problem, this specification makes it non-conforming to

have executable script in a <script> element when the src attribute is present. This

means that authors who are validating their documents are less likely to waste time

with this kind of mistake.

¶

Errors that involve areas that affect authors migrating to and from XHTML

Some authors like to write files that can be interpreted as both XML and HTML with

similar results. Though this practice is discouraged in general due to the myriad of subtle

complications involved (especially when involving scripting, styling, or any kind of

automated serialization), this specification has a few restrictions intended to at least

somewhat mitigate the difficulties. This makes it easier for authors to use this as a

semantics-embedded-content.html#elementdef-area
semantics-embedded-content.html#elementdef-area
semantics-embedded-content.html#elementdef-area
semantics-embedded-content.html#element-attrdef-area-shape
semantics-embedded-content.html#attr-valuedef-area-shape-circ
semantics-embedded-content.html#attr-valuedef-area-shape-circle
semantics-embedded-content.html#attr-valuedef-area-shape-circ
introduction.html#example-4869a48e
introduction.html#example-4869a48e
sec-forms.html#elementdef-form
sec-forms.html#elementdef-form
sec-forms.html#elementdef-form
dom.html#phrasing-content-2
sec-forms.html#elementdef-form
sec-forms.html#elementdef-form
sec-forms.html#elementdef-form
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
grouping-content.html#elementdef-p
dom.html#paragraph
introduction.html#example-6c4dba70
introduction.html#example-6c4dba70
dom.html#element-attrdef-global-id
introduction.html#example-4231d48e
introduction.html#example-4231d48e
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#element-attrdef-script-src
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#elementdef-script
semantics-scripting.html#element-attrdef-script-src
introduction.html#example-e37e480c
introduction.html#example-e37e480c

transitionary step when migrating between HTML and XHTML.

'EXAMPLE ' COUNTER(EXAMPLE) For example, there are somewhat complicated

rules surrounding the lang and xml:lang attributes intended to keep the two

synchronized.

¶

'EXAMPLE ' COUNTER(EXAMPLE) Another example would be the restrictions on the

values of xmlns attributes in the HTML serialization, which are intended to ensure

that elements in conforming documents end up in the same namespaces whether

processed as HTML or XML.

¶

Errors that involve areas reserved for future expansion

As with the restrictions on the syntax intended to allow for new syntax in future revisions

of the language, some restrictions on the content models of elements and values of

attributes are intended to allow for future expansion of the HTML vocabulary.

'EXAMPLE ' COUNTER(EXAMPLE) For example, limiting the values of the target

attribute that start with an U+005F LOW LINE character (_) to only specific

predefined values allows new predefined values to be introduced at a future time

without conflicting with author-defined values.

¶

Errors that indicate a mis-use of other specifications

Certain restrictions are intended to support the restrictions made by other specifications.

'EXAMPLE ' COUNTER(EXAMPLE) For example, requiring that attributes that take

media query lists use only valid media query lists reinforces the importance of

following the conformance rules of that specification.

¶

1.11. Suggested reading§

This section is non-normative.

The following documents might be of interest to readers of this specification.

Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]

This Architectural Specification provides authors of specifications, software

developers, and content developers with a common reference for interoperable text

manipulation on the World Wide Web, building on the Universal Character Set,

defined jointly by the Unicode specification and ISO/IEC 10646. Topics addressed

include use of the terms "character", "encoding" and "string", a reference processing

model, choice and identification of character encodings, character escaping, and

string indexing.

Unicode Security Considerations [UNICODE-SECURITY]

dom.html#element-attrdef-global-lang
dom.html#element-attrdef-xml-lang
introduction.html#example-cfd6bac9
introduction.html#example-cfd6bac9
https://www.w3.org/TR/xml-names/#ns-decl
introduction.html#example-ae76a762
introduction.html#example-ae76a762
links.html#element-attrdef-a-target
introduction.html#example-29868b5a
introduction.html#example-29868b5a
introduction.html#example-153135f0
introduction.html#example-153135f0
introduction.html#suggested-reading
introduction.html#suggested-reading
references.html#biblio-charmod
references.html#biblio-unicode-security

Because Unicode contains such a large number of characters and incorporates the

varied writing systems of the world, incorrect usage can expose programs or systems

to possible security attacks. This is especially important as more and more products

are internationalized. This document describes some of the security considerations

that programmers, system analysts, standards developers, and users should take into

account, and provides specific recommendations to reduce the risk of problems.

Web Content Accessibility Guidelines (WCAG) 2.0 [WCAG20]

Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of

recommendations for making Web content more accessible. Following these

guidelines will make content accessible to a wider range of people with disabilities,

including blindness and low vision, deafness and hearing loss, learning disabilities,

cognitive limitations, limited movement, speech disabilities, photosensitivity and

combinations of these. Following these guidelines will also often make your Web

content more usable to users in general.

Authoring Tool Accessibility Guidelines (ATAG) 2.0 [ATAG20]

This specification provides guidelines for designing Web content authoring tools that

are more accessible for people with disabilities. An authoring tool that conforms to

these guidelines will promote accessibility by providing an accessible user interface

to authors with disabilities as well as by enabling, supporting, and promoting the

production of accessible Web content by all authors.

User Agent Accessibility Guidelines (UAAG) 2.0 [UAAG20]

This document provides guidelines for designing user agents that lower barriers to

Web accessibility for people with disabilities. User agents include browsers and other

types of software that retrieve and render Web content. A user agent that conforms

to these guidelines will promote accessibility through its own user interface and

through other internal facilities, including its ability to communicate with other

technologies (especially assistive technologies). Furthermore, all users, not just users

with disabilities, should find conforming user agents to be more usable.

HTML Accessibility APIs Mappings 1.0 [html-aam-1.0]

Defines how user agents map HTML 5.1 elements and attributes to platform

accessibility APIs. Documenting these mappings promotes interoperable exposure

of roles, states, properties, and events implemented by accessibility APIs and helps

to ensure that this information appears in a manner consistent with author intent.

references.html#biblio-wcag20
references.html#biblio-atag20
references.html#biblio-uaag20
references.html#biblio-html-aam-10

